29 research outputs found

    D5.1: Accelerator Deployment Models

    Get PDF
    In this deliverable, we explore this question by studying accelerator deployment models. Under accelerator, we understand for example application-specific GPUs or specially programmed FPGAs. A deployment specifies types, amount, and connectivity of accelerators in a datacenter. With these definitions in mind, we created a theoretical model of the datacenter, its components, expected workloads, and finally, it is possible deployments. We have developed VineSim, a software simulator of a datacenter, based on the aforementioned theoretical modeling. VineSim takes as inputs a workload and a deployment description and outputs performance metrics of interest, such as job latency and resource utilization. In VineSim, one can configure several parameters, including how tasks are allocated to nodes, and estimations of how fast they execute on different accelerators. VineSim can be used to explore how different deployments respond to different kinds of workloads, thus allowing one to determine how to best compose a datacenter based on particular workload, performance, or budgeting requirements

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    The VINEYARD Approach: Versatile, Integrated, Accelerator-Based, Heterogeneous Data Centres.

    Get PDF
    Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Get PDF
    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU

    Experimental Demonstration of a Cognitive Optical Network for Reduction of Restoration Time

    Get PDF
    This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time. This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time

    A Survey on Reconfigurable Accelerators for Cloud Computing

    No full text
    Data centers are experiencing an exponential increase in the amount of network traffic that they have to sustain due to cloud computing and several emerging web applications. To face this network load, large data centers are required with thousands of servers interconnected with high bandwidth switches. Current data center, based on general purpose processor, consume excessive power while their utilization is quite low. Hardware accelerators can provide high energy efficiency for many cloud applications but they lack the programming efficiency of processors. In the last few years, there several efforts for the efficient deployment of hardware accelerators in the data centers. This paper presents a thorough survey of the frameworks for the efficient utilization of the FPGAs in the data centers. Furthermore it presents the hardware accelerators that have been implemented for the most widely used cloud computing applications. Furthermore, the paper provides a qualitative categorization and comparison of the proposed schemes based on their main features such as speedup and energy efficiency

    Configurable Transactional Memory

    No full text
    Programming efficiency of heterogeneous concurrent systems is limited by the use of lock-based synchronization mechanisms. Transactional memories can greatly improve the programming efficiency of such systems. In fieldprogrammable computing machines, a conventional fixed transactional memory becomes inefficient use of the silicon. We propose configurable transactional memory (CTM) as a mechanism to implement application specific synchronization that utilizes the field-programmability of such devices to match with the requirements of an application. The proposed configurable transactional memory is targeted at embedded applications and is area efficient compared to conventional schemes that are implemented with cache-coherent protocols. In particular, the CTM is designed to be incorporated in to compilation and synthesis paths of either high-level languages or during system creation process using tools such as Xilinx EDK. We study the impact of deploying a CTM in a packet metering and statistics application and two microbenchmarks as compared to a lock-based synchronization scheme. We have implemented this application in a Xilinx Virtex4 device and found that the CTM was 0-73 % better than a fine-grained lock-based scheme
    corecore